
Parallel State Space Construction

for Model-Checking

Hubert Garavel, Radu Mateescu, and Irina Smarandache

Inria Rhône-Alpes / Vasy, 655, avenue de l'Europe
F-38330 Montbonnot Saint Martin, France

Hubert.Garavel@inria.fr, Radu.Mateescu@inria.fr, Irina.Sturm@st.com

Abstract. The veri�cation of concurrent �nite-state systems by model-
checking often requires to generate (a large part of) the state space
of the system under analysis. Because of the state explosion problem,
this may be a resource-consuming operation, both in terms of memory
and Cpu time. In this paper, we aim at improving the performances of
state space construction by using parallelization techniques. We present
parallel algorithms for constructing state spaces (or Labeled Transition
Systems) on a network or a cluster of workstations. Each node in the
network builds a part of the state space, all parts being merged to form
the whole state space upon termination of the parallel computation.
These algorithms have been implemented within the Cadp veri�cation
tool set and experimented on various concurrent applications speci�ed
in Lotos. The results obtained show close to ideal speedups and a good
load balancing between network nodes.

Key-words: distributed algorithms, labeled transition system,
Lotos, model-checking, state space construction, veri�cation

1 Introduction

As formal veri�cation becomes increasingly used in the industry as a part of the
design process, there is a constant need for e�cient tool support to deal with
real-size applications. Model-checking [20, 10] is a successful veri�cation method
based on reachability analysis (state space exploration) and allows an automatic
detection of early design errors in �nite-state systems. Model-checking works by
constructing a model (state space) of the system under design, on which the
desired correctness properties are veri�ed.

There are essentially two approaches to model-checking: symbolic veri�ca-
tion [9, 10] represents the state space in comprehension, by using various en-
coding techniques (e.g., Bdds), and enumerative veri�cation [32, 11, 12, 19] rep-
resents the state space in extension, by enumerating all reachable states. Enu-
merative model-checking techniques can be further divided in global techniques,
which require to entirely construct the state space before performing the veri�-
cation, and local (or on-the-y) techniques, which allow to construct the state
space simultaneously with the veri�cation.



In this paper, we focus on enumerative model-checking, which is well-
adapted to asynchronous, non-deterministic systems containing complex data
types (records, sets, lists, trees, etc.). More precisely, we consider the problem of
constructing a Labeled Transition System (Lts), which is the natural model for
high-level, action-based speci�cation languages, especially process algebras such
as Ccs [30], Csp [18], Acp [4], or Lotos [21]. An Lts is constructed by explor-
ing the transition relation starting from the initial state (forward reachability).
During this operation, all explored states must be kept in memory in order to
avoid multiple exploration of a same state. Once the Lts is constructed, it can be
used as input for various veri�cation procedures, such as bisimulation/preorder
checking and temporal logic model-checking. Moreover, when the veri�cation
requires to explore the entire Lts (e.g., when verifying invariant temporal prop-
erties or checking bisimulation), since the state contents is abstracted away in
a constructed Lts, the memory consumed is generally much smaller than for
on-the-y veri�cation on the initial speci�cation.

State space construction may be very consuming both in terms of memory
and execution time: this is the so-called state explosion problem. During the
last decade, di�erent techniques for handling state explosion have been pro-
posed, among which partial orders and symmetries; however, for industrial-scale
systems, these optimizations are not always su�cient. Moreover, most of the
currently available veri�cation tools work on sequential machines, which limits
the amount of memory (between 0.5 and 2 GBytes on usual con�gurations), and
therefore the use of clusters or networks of workstations is desirable.

In this paper, we investigate an approach to parallelize state space construc-
tion on several machines, in order to bene�t from all the local memories and Cpu
resources of each machine. This allows to reduce both the amount of memory
needed on each machine and the overall execution time. We propose algorithms
for parallel construction of Ltss, developed using the generic environments Bcg
and Open/C�sar [13] for Lts manipulation provided by the Cadp veri�cation
tool set [12]. Since these environments are language independent, our algorithms
can be directly used not only for Lotos, but also for every language connected
to the Open/C�sar application programming interface, such as Uml [22].

The implementation is based on standard sockets, available everywhere, and
was experimented on two di�erent con�gurations: a typical network of work-
stations (Sparc workstations running Solaris and Pcs running Linux, connected
using 100 Mb/s Ethernet), and a cluster of Pcs (with 450 MHz processor and
512 MBytes main memory) connected using Sci (Scalable Coherent Interface).
Each machine in the network is responsible for constructing a part of the Lts,
this part being determined using a static partition function. Upon termination
of the parallel computation, which is detected by means of a virtual ring-based
distributed algorithm, all parts are merged to form the complete Lts.

We experimented with our algorithms on three non-trivial protocols speci�ed
in Lotos: the home audio-video (Havi) protocol of Philips [33], the TokenRing
leader election protocol [14], and the Scsi-2 bus arbitration protocol [3].



Related work Distributed state space construction has been studied in various
contexts, mostly for the analysis of low-level formalisms. such as Petri nets,
stochastic Petri nets, discrete-time and continuous-time Markov chains [5, 6, 2,
1, 8, 31, 27, 16, 23].

All these approaches share a common idea: each machine in the network ex-
plores a subset of the state space. However, they di�er on a number of design
principles and implementation choices such as: the choice between a shared mem-
ory architecture and a message-passing one, the use of hash tables or B-trees to
store states on each machine, the way of partitioning the state space using either
static hash functions or dynamic ones that allow dynamic load balancing, etc.

As regards high-level languages for asynchronous concurrency, a distributed
state space exploration algorithm [26] derived from the Spin model-checker [19]
has been implemented for the Promela language. The algorithm performs well
on homogeneous networks of machines, but it does not outperform the standard,
sequential implementation of Spin, except for problems that do not �t into
the main memory of a single machine. Several Spin-speci�c partition functions
are experimented, the most advantageous one being a function that takes into
account only a fraction of the state vector.

Another distributed state enumeration algorithm has been implemented in
the Mur' veri�er [34]. The speedups obtained are close to linear and the hash
function used for state space partition provides a good load balancing. However,
experimental data reported concerns relatively small state spaces (approxima-
tively 1.5 M states) on a 32-node UltraSparc Myrinet network of workstations.

There also exist approaches, such as [24], in which parallelization is applied
to \partial" veri�cation, i.e., state enumeration in which some states can be
omitted with a low probability. In the present paper, we only address exact,
exhaustive veri�cation issues.

For completeness, we can also mention an alternative approach [17] in which
symbolic reachability analysis is distributed over a network of workstations: this
approach does not handle states individually, but sets of states encoded using
Bdds.

Paper outline Section 2 gives some preliminary de�nitions and speci�es the
context of our work. Section 3 describes the proposed algorithms for parallel
construction of Ltss. Section 4 discusses implementation issues and presents
various experimental results. Finally, Section 5 gives some concluding remarks
and directions for future work.

2 De�nitions

A (monolithic) Labeled Transition System (Lts) is a tuple M = (S;A; T; s0),
where S is the set of states, A is the set of actions, T � S�A�S is the transition
relation, and s0 2 S is the initial state. A transition (s; a; s0) 2 T indicates that
the system can move from state s to state s0 by performing action a. All states
in S are assumed to be reachable from s0 via (sequences of) transitions in T .



In the model-checking approach by state enumeration, there are essentially
two ways to represent an Lts:

explicitly, by enumerating all its states and transitions. In this case, the con-
tents of states becomes irrelevant, since the essential information is given by
actions (transition labels). Therefore, when storing an Lts as a computer �le,
it is su�cient to encode states as natural numbers. An explicit representa-
tion of Ltss is provided by the Bcg (Binary Coded Graph) �le format of the
Cadp veri�cation tool set [12]. The Bcg format is based upon specialized
compression algorithms, allowing compact encodings of Ltss.

implicitly, by giving its initial state s0 and its successor function succ : S ! 2T

de�ned by succ(s) = f(s; a; s0) j (s; a; s0) 2 Tg. An implicit representa-
tion of Ltss is provided by the generic, language independent environment
Open/C�sar [13] of Cadp. Open/C�sar o�ers primitives for accessing
the initial state of an Lts and for enumerating the successors of a given
state, as well as various data structures (state tables, stacks, etc.), allowing
straightforward implementations of on-the-y veri�cation algorithms.

Our objective is to translate Ltss from an implicit to an explicit representation
by using parallelization techniques.

In order to represent a monolithic Lts M = (S;A; T; s0) on N machines
(numbered from 0 to N � 1), we introduce the notion of partitioned Lts D =
(M0; : : : ;MN�1; s0), where: S = [N�1

i=0 Si and Si \ Sj = ; for all 0 � i; j < N
(the state set is partitioned into N classes, one class per machine), A = [N�1

i=0 Ai,
T = [N�1

i=0 Ti and (s; a; s0) 2 Ti ) s0 2 Si for all 0 � i < N (transitions between
two states belonging to di�erent classes are part of the transition relation of
the component Lts containing the target state). Note that initial states of the
component Ltss Mi are irrelevant, since the corresponding subgraphs may be
not connected (i.e., not reachable from a single state). A partitioned Lts can be
represented as a collection of Bcg �les encoding the componentsM0; : : : ;MN�1.

3 Parallel generation of LTSs

In this section we present two complementary algorithms allowing to convert
an implicit Lts (de�ned using the Open/C�sar interface) to an explicit one
(represented as a Bcg �le) using N machines connected by a network. These
algorithms operate in two steps:

{ Construction of a partitioned Lts represented as a collection of Bcg �les.
This is done by using an algorithm called Distributor, which is executed
on every machine in order to generate a Bcg �le encoding a component of
the partitioned Lts.

{ Conversion to a monolithic Lts represented as a single Bcg �le. This is done
using an algorithm called BcgMerge, which is executed on a sequential
machine in order to generate a single Bcg �le containing all the states and
transitions of the partitioned Lts.



Once the Bcg �le encoding the initial Lts has been constructed, it can be
used as input for the Evaluator 3.0 model-checker [28] of Cadp, which allows
linear-time veri�cation of temporal formulas expressed in regular alternation-free
�-calculus.

3.1 Construction of partitioned LTSs

We consider a network of N machines numbered from 0 to N � 1 and an Lts
M = (S;A; T; s0) given implicitly by its initial state s0 and its successor func-
tion succ. Machine i can send a message m to machine j by invoking a primitive
named Send (j;m), and can receive a message by invoking another primitive
Receive (m). There are four kinds of messages:Arc, Rec, Snd, and Trm, the �rst
one being used for sending Lts transitions and the others being related to termi-
nation detection. Send and Receive are assumed to be non-blocking. Receive
returns a boolean answer indicating whether a message has been received or not.

The parallel generation algorithm Distributor that we propose is shown
on Figure 1. Each machine executes an instance of Distributor and explores a
part of the state space S. The states explored by each machine are determined
using a static partition function h : S ! [0; N � 1]. Machine i explores all states
s such that h(s) = i and produces a Bcg �le Bi = (Si; Ai; Ti). The computation
is started by the machine called initiator, having the index h(s0), which explores
the initial state of the Lts.

The states visited and explored by machine i during the forward traversal of
the Lts are stored in two sets Vi (\visited") and Ei (\explored"), respectively.
Vi and Ei are implemented using the state table handling primitives provided
by the Open/C�sar environment. The transitions to be written to the local
Bcg �le Bi are temporarily kept in a work list Li. It is worth noticing that
the Distributor algorithm only keeps in memory the state set Si of the corre-
sponding component of the partitioned Lts, whilst the transition relation Ti is
stored in the Bcg �le Bi. The Distributor algorithm consists of a main loop,
which performs three actions:

(a) A state s 2 Vi is explored by enumerating all its successor transitions
(s; a; s0) 2 succ(s). If a target state s0 belongs to machine i (i.e., h(s0) = i),
the corresponding transition is kept in the list Li and will be processed
later. Otherwise, the transition is sent to machine h(s0) as a message
Arc(ni(s); a; s

0), where ni(s) is the number associated by machine i to s.
Machine h(s0) is responsible for writing the transition to its local Bcg �le
and for exploring state s0. Note that there is no need to send the contents
of state s itself, but only its number ni(s).

(b) A transition is taken from Li and is written to the Bcg �le Bi by computing
appropriate numbers for the source and target states. In order to obtain
a bijective numbering of Lts states across the N Bcg �les, each state s
explored by machine i is assigned a number ni(s) such that ni(s) mod N = i.
This is done using a counter ci, which is initialized to i and incremented by
N every time a new state is visited.



procedure Distributor (i, s0, succ, h, N) is
initiator i := (h(s0) = i); Li := ;; Ei := ;; Ai := ;; Ti := ;; ci := i;
if initiator i then

terminit := false; ni(s0) := ci; Vi := fs0g; Si := fni(s0)g
else

Vi := ;; Si := ;
endif;
terminated i := false; nbsent i := 0; nbrecd i := 0;
while :terminated i do

(a) if Vi 6= ; then
let s 2 Vi; Vi := Vi n fsg; Ei := Ei [ fsg;
forall (s; a; s0) 2 succ(s) do

if h(s0) = i then
Li := Li [ f(ni(s); a; s

0)g
else

Send (h(s0), Arc(ni(s); a; s
0)); nbsent i := nbsent i + 1

endif
endfor

(b) elsif Li 6= ; then
let (n; a; s) 2 Li; Li := Li n f(n; a; s)g;
if s 62 Ei [ Vi then

ci := ci +N ; ni(s) := ci; Vi := Vi [ fsg; Si := Si [ fni(s)g;
endif;
Ai := Ai [ fag; Ti := Ti [ f(n; a; ni(s))g

endif;
(c) if Receive (m) then

case m is
Arc(n; a; s) ! Li := Li [ f(n; a; s)g; nbrecd i := nbrecd i + 1
Rec(k) ! if :initiator i then

Send ((i+ 1) mod N , Rec(k + nbrecd i))
elsif terminit then

totalrecd := k; Send ((i+ 1) mod N , Snd(nbsent i))
endif

Snd(k) ! if :initiator i then
Send ((i+ 1) mod N , Snd(k + nbsent i))

elsif terminit ^ totalrecd = k then
Send ((i+ 1) mod N , Trm)

else
terminit := false

endif
Trm ! if :initiator i then

Send ((i+ 1) mod N , Trm)
endif;
terminated i := true

endcase
endif;
if Li = ; ^ Vi = ; ^ initiator i ^ :terminit then

terminit := true; Send ((i+ 1) mod N , Rec(nbrecd i))
endif

endwhile
end

Fig. 1. Parallel generation of an Lts as a collection of Bcg �les



(c) An attempt is made to receive a message m from another machine. If m has
the form Arc(n; a; s), it denotes a transition (s0; a; s), where n is the source
state number nj(s

0) assigned by the sender machine of index j = n mod N .
In this case, the contents of m is stored in the list Li; otherwise, m is related
to termination detection (see below). Thus, the Bcg �le Bi will contain all
Lts transitions whose target states are explored by machine i.

In order to detect the termination of the parallel Lts generation, we use a vir-
tual ring-based algorithm inspired by [29]. According to the general de�nition,
(global) termination is reached when all local computations are �nished (i.e.,
each machine i has neither remaining states to explore, nor transitions to write
in its Bcg �le Bi) and all communication channels are empty (i.e., all sent
transitions have been received).

The principle of the termination detection algorithm used in Distributor is
the following. All machines are supposed to be on an unidirectional virtual ring
that connects every machine i to its successor machine (i + 1) mod N . Every
time the initiator machine �nishes its local computations, it checks whether
global termination has been reached by generating two successive waves of Rec
and Snd messages on the virtual ring to collect the number of messages received
and sent by all machines, respectively. A message Rec(k) (resp. Snd(k)) received
by machine i indicates that k messages have been received (resp. sent) by the
machines from the initiator up to (i � 1) mod N . Each machine i counts the
messages it has received and sent using two integer variables nbrecd i and nbsent i,
and adds their values to the numbers carried by Rec and Snd messages. Upon
receipt of the Snd(k) message ending the second wave, the initiator machine
checks whether the total number k of messages sent is equal to the total number
totalrecd of messages received (the result of the Rec wave). If this is the case, it
will inform the other machines that termination has been reached, by sending
a Trm message on the ring. Otherwise, the initiator concludes that termination
has not been reached yet and will generate a new termination detection wave
later.

In practice, to reduce the number of termination detection messages, each
machine propagates the current wave only when its local computations are �n-
ished (for simplicity, we did not specify this in Figure 1). Experimental results
have shown that in this case there is almost no termination detection overhead,
two waves being always su�cient. This distributed termination detection scheme
seems to use less messages than the centralized termination detection schemes
used in the parallel versions of Spin [26] and Mur' [34], which in all cases re-
quire several broadcast message exchanges between a coordinator machine and
all other machines.

3.2 Merging of partitioned LTSs into monolithic LTSs

After constructing a collection of N Bcg �les representing a partitioned Lts
by using the Distributor algorithm, the next step is to convert them into a
unique Bcg �le in order to make it usable by the veri�cation tools of Cadp.



Since the states contained in di�erent Bcg �les have been given unique numbers
by the Distributor algorithm (i.e., every state belonging to the Bcg �le Bi

has an index k such that k mod N = i and two states belonging to the same
Bcg �le have di�erent numbers), this could simply be done by concatenating
all transitions of the N Bcg �les.

However, since the partition function h is not perfect, a simple concatenation
may result in a Bcg �le with an initial state number di�erent from 0 (when
h(s0) 6= 0) and with \holes" in the numbering of states (when jSij 6= jSj j for
two Bcg �les Bi and Bj). For example, for an Lts with 7 states and N = 2,
Distributor could produce S0 = f0; 2; 4; 6; 8g, S1 = f1; 3g, and h(s0) = 1,
which would lead by concatenation to a Bcg �le with S = f0; 1; 2; 3; 4; 6; 8g
instead of S = f0; 1; 2; 3; 4; 5; 6g. A contiguous renumbering of the states would
be more suitable for achieving a better compaction of the �nal Bcg �le.

The conversion algorithm BcgMerge that we propose (see Figure 2) takes
as inputs a partitioned Lts represented as a collection of Bcg �les B0; : : : ; BN�1

generated using Distributor from an Lts M = (S;A; T; s0), and the index i0
(= h(s0)) of the Bcg �le containing s0. BcgMerge constructs a Bcg �le that
encodes M by numbering the states contiguously from 0 to jSj � 1.

procedure BcgMerge (B0, ..., BN�1, i0) is
c := 0;
forall k = 0 to N � 1 do

i := (i0 + k) mod N ;
ci := c;
c := c+ jfq 2 Si j q mod N = igj
c := c+ jfq 2 Si j q mod N = igj

end;
Q := ;; A := ;; R := ;; q0 := 0;
forall k = 0 to N � 1 do

i := (i0 + k) mod N ;
forall (q; a; q0) 2 Ti do

Q := Q [ fcq mod N + (q div N); ci + (q0 div N)g;
A := A [ fag;
R := R [ f(cq mod N + (q div N); a; ci + (q0 div N))g

end
end

end

Fig. 2. Merging of a collection of Bcg �les into a single one

Let Ni = jfq 2 Si j q mod N = igj be the number of states belonging to
�le Bi, i.e., the states s 2 S of the original Lts having h(s) = i. The idea is
to assign to each Bcg �le Bi (for i going from i0 to (i0 + N � 1) mod N) a
new range [ci; ci + Ni � 1] of contiguous state numbers such that ci0 = 0 and



c(i+1) mod N = ci + Ni. The �nal Bcg �le B = (Q;A;R; q0) is then obtained
by concatenating the transitions of all Bcg �les Bi, each state number q 2 Si
corresponding to a state s 2 S with h(s) = i being replaced by ci + (q div N)
(where div denotes integer division). Thus, the initial state s0 will get number
q0 = ci0 + (i0 div N) = 0 and all states will be numbered contiguously.

It is worth noticing that the BcgMerge algorithm processes only one Bcg
�le Bi at a time and does not require to load in memory the transition relation
of Bi. State renumbering is performed on-the-y, resulting in a low memory
consumption, independent from the size of the input Bcg �les.

4 Experimental results

We implemented the Distributor and BcgMerge algorithms within the
Cadp veri�cation tool set [12] by using the Open/C�sar [13] and Bcg en-
vironments. To ensure maximal portability, the communication primitives of
Distributor are built on top of Tcp/Ip using standardUnix sockets. An alter-
native implementation using theMpi (Message Passing Interface) standard [15]
would have been possible; we chose sockets because they are built-in in most
operating systems and because the Distributor algorithm was simple enough
not to require the higher-level functionalities provided by Mpi.

We experimented Distributor and BcgMerge on three industrial-sized
protocols speci�ed in Lotos:

(a) The Havi protocol [33], standardized by several companies, among which
Philips, in order to solve interoperability problems for home audio-video
networks. Havi provides a distributed platform for developing applications
on top of home networks containing heterogeneous electronic devices and
allowing dynamic plug-and-play changes in the network con�guration. We
considered a con�guration of the Havi protocol with 2 device control man-
agers (1,039,017 states and 3,371,039 transitions, state size of 80 bytes).

(b) The correct TokenRing leader election protocol [14] for unidirectional ring
networks, which is an enhanced version of the protocols proposed by Le
Lann [25] and by Chang & Roberts [7]. This TokenRing protocol corrects
an error in Le Lann's and Chang & Roberts' protocols, by allowing to des-
ignate a unique leader station in presence of various faults of the system,
such as message losses and station crashes. We considered a con�guration of
the TokenRing protocol with 3 stations (12,362,489 states and 45,291,166
transitions, state size of 6 bytes).

(c) The arbitration protocol for the Scsi-2 bus [3], which is designed to provide
an e�cient peer-to-peer I/O bus for interconnecting computers and periph-
eral devices (magnetic and optical disks, tapes, printers, etc.). We consid-
ered Scsi-2 con�gurations consisting of a controller device and several disks
that accept data transfer requests from the controller. Two versions of the
speci�cation have been used: v1, with 5 disks (961,546 states and 5,997,701
transitions, state size of 13 bytes) and v2, with 6 disks (1,202,208 states and
13,817,802 transitions, state size of 15 bytes).



The experiments have been performed on a cluster of 450 MHz, 512 MBytes
Pcs connected via Sci. Our performance measurements concern three aspects:
speedup, partition function, and use of communication bu�ers.

4.1 Speedup

Figure 3 shows the speedups obtained by generating the Ltss of the aforemen-
tioned Lotos speci�cations in parallel on a cluster with up to 10 Pcs. For the
TokenRing and Havi protocols, the speedups observed on N machines are
given approximately by the formulas SN = t1=tN = 0:4N and SN = 0:3N (tk
being the execution time on k machines). For the v1 and v2 versions of the
Scsi-2 protocol, the speedups obtained are close to ideal.

0

2

4

6

8

10

12

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
SCSI v1
SCSI v2

TOKEN-RING
HAVi

Fig. 3. Speedup measurements for the Havi, TokenRing, and Scsi-2 protocols

These results can be explained by examining the implementation of the
Distributor algorithm. The state sets explored by each machine in the network
are stored locally using the hash tables provided by the Open/C�sar library.
Since the search time in a hash table linearly increases with the number of states
present in the table, splitting the state set among N machines is likely to re-
duce by N the overall search time. Also, parallelization becomes e�cient when
the time spent in generating state successors is important, which happens for
Lotos speci�cations having many parallel processes and complex synchroniza-
tion patterns. This explains why the speedup obtained for the Scsi-2 is better
than for the TokenRing: the Scsi-2 example involves complex data computa-
tions (handling of disk bu�ers and of device status kept by the controller) and
synchronizations (multiple rendezvous between 6 or 7 devices to gain bus ac-



cess), whereas the TokenRing example has very simple computations and only
binary synchronizations between stations and communication links.

The speedups obtained show a good overlapping between computations and
communications during the execution of Distributor. This is partly due to
a bu�ered communication scheme with well-chosen dimensions of transmission
bu�ers (see Section 4.3).

4.2 Choosing a good partition function

In order to increase the performance of the parallel generation algorithm, it is
essential to achieve a good load balancing between theN machines, meaning that
the N parts of the distributed Lts should contain (nearly) the same number
of states. As indicated in Section 3.1, we adopted a static partition scheme,
which avoids the potential communication overhead occurring in dynamic load
balancing schemes. Then, the problem is to choose an appropriate partition
function h : S ! [0; N � 1] associating to each state a machine index.

Because we target at language independent state space construction, we can-
not assume that state contents exhibit structural properties (e.g., constant �elds,
repeated patterns, etc.) particular to a given language. All that we can assume
is that state contents are uniformly distributed bit strings.

The Open/C�sar environment [13] of Cadp o�ers several hashing func-
tions f(s; P ) that compute, for a state s and a prime number P , a hash-code
between 0 and P � 1. The function we chose1 performs very well, i.e., it uni-
formly distributes the states of S into P chunks, each one containing jSj div P
states. To distribute these P chunks on N machines, the simplest way is to take
the remainder of the hash-code modulo N , yielding a partition function of the
form h(s) = f(s; P ) mod N . In order to guarantee that h also distributes states
uniformly among the N machines, we must choose an appropriate value for P .

Still assuming that state contents are uniformly distributed, the parti-
tion function h will allocate (P div N) + 1 chunks on each machine j 2
f0; : : : ; (P mod N) � 1g and P div N chunks on each other. If N is prime,
the obvious choice for P is P = N , leading to a distribution of a single chunk
on each machine. If N is not prime, a choice of P such that P mod N = 1
ensures that only machine 0 has one chunk more than the others. In this case,
P should be su�ciently big, in order to reduce the size jSj div P of a chunk. For
the experiments presented in this paper, we chose P around 1,600,000 (which
gives a limit of 10 states per chunk).

Figures 4 and 5 show the distribution of the states on 10 machines for the
main protocols described above. In order to evaluate the quality of the distri-

bution, we calculated the standard deviation � =

q
(
PN�1

i=0 (jSij � jSj=N)2)=N

between the sizes jSij of the state sets explored by each machine i in the net-
work. For all examples considered, the values obtained for � are very small (less

1 This hashing function, called CAESAR STATE 3 HASH() in the Open/C�sar library,
calculates the remainder modulo a prime number of the state vector (seen as an
arbitrarily long integer number).



than 1% of the mean value jSj=N), which indicates a good performance of the
partition function h.

96000

96050

96100

96150

96200

96250

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 s

ta
te

s

Indexes of the processors

SCSI v1
MEAN

119300

120100

120900

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 s

ta
te

s

Indexes of the processors

SCSI v2
MEAN

Fig. 4. State distributions for the Scsi-2 protocol on 10 machines

1.234e+06

1.2345e+06

1.235e+06

1.2355e+06

1.236e+06

1.2365e+06

1.237e+06

1.2375e+06

1.238e+06

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 s

ta
te

s

Indexes of the processors

TOKEN-RING
MEAN

100000

101000

102000

103000

104000

105000

106000

107000

108000

1 2 3 4 5 6 7 8 9 10

N
um

be
r 

of
 s

ta
te

s

Indexes of the processors

HAVi
MEAN

Fig. 5. State distribution for the TokenRing and Havi protocols on 10 machines

The quality of a partition function could also be estimated according to the
number of \cross-border" transitions of the partitioned Lts (i.e., transitions hav-
ing the source state in a component and the target state in another component).
This number should be as small as possible, since it is equal to the number of Arc
messages sent over the network during the execution of Distributor. However,



in practice, reducing the number of cross-border transitions would require ad-
ditional information about the structure of the program, and therefore must be
language dependent. Since Distributor is built using the language indepen-
dent Open/C�sar environment, we did not focused on developing language
dependent (e.g., Lotos-speci�c) partition functions. This might be done in the
future, by extending the Open/C�sar application programming interface to
provide more information about the internal structure of program states.

4.3 Using communication bu�ers

To reduce the overhead of message transmission and to increase the overlap-
ping between communications and computations, we chose an asynchronous,
non-blocking implementation of the Send and Receive primitives used in the
Distributor algorithm. Also, to reduce communication latency, these primi-
tives actually perform a bu�ering of messages (Lts transitions) instead of sending
them one by one as indicated in Figure 1.

The implementation is based on Tcp/Ip and standard Unix communication
primitives (sockets). In practice, for each machine 0 � i � N�1, there is a virtual
channel (i; j) to every other machine j 6= i with a corresponding logical bu�er of
size L used for storing messages transmitted on the channel. The N � 1 virtual
channels associated with each machine share the same physical channel (socket),
which has an associated bu�er of size Lp. For a given size d of messages (which
depends on the application), we observed that the optimal length of the logical
transmission bu�er is given by the formula Lopt = Lp=d(N � 1). Experiments
show that for this value, all transitions accumulated in the logical transmission
bu�ers can be sent at the physical level by the next call to Send.

Figure 6 illustrates the e�ect of bu�ering on Distributor's speedup for
the Scsi-2 and the TokenRing protocols. A uniform increase of speedup is
observed between the variants L = 1 (no bu�ering) and L = Lopt . The di�erence
in speedup is greater for the TokenRing protocol because the percentage of
communication time w.r.t. computation time is more important than for the
Scsi-2 protocol. Therefore, the value Lopt seems a good choice for ensuring a
maximal overlapping of communications and computations.

5 Conclusion and future work

We presented a solution for constructing an Lts in parallel using N ma-
chines connected by a network. Each machine constructs a part of the Lts
using the Distributor algorithm, all resulting parts being combined using
the BcgMerge algorithm to form the complete Lts. These algorithms have
been implemented within the Cadp tool set [12] using the generic environments
Open/C�sar [13] and Bcg for implicit and explicit manipulation of Ltss.

Being independent from any speci�cation language is a di�erence between
our approach and other related work. To our knowledge, all published algo-
rithms but [8] are dedicated to a speci�c low-level formalism (Petri nets, Markov



0

2

4

6

8

10

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
SCSI v1

SCSI v1 (1)

0

2

4

6

8

10

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
SCSI v2

SCSI v2 (1)

0

2

4

6

8

10

3 4 5 6 7 8 9 10

S
pe

ed
up

Number of processors

Ideal speedup
TOKEN-RING

TOKEN-RING (1)

Fig. 6. Speedup measurements for the Scsi-2 and TokenRing protocols for transmis-
sion bu�ers of size 1 and Lopt



chains, etc.) or high-level language (Mur', Promela, etc.). On the contrary,
as the Open/C�sar and Bcg environments are language independent, the
Distributor and BcgMerge tools can be used not only for Lotos, but also
for every language having a connection to the Open/C�sar interface, such as
the Umlaut compiler for Uml [22].

Another distinctive feature of our approach relies in the scheme used by
Distributor and BcgMerge to assign unique numbers to states. Although
the Distributor algorithm is similar to the ExploreDistributed algorithm of
[8], we manage to number states with mere integers, whereas [8] uses pairs of
the form hprocessor number ; local state numberi.

We experimented our approach on several real-size Lotos speci�cations, for
which we generated large Ltss (up to 12 million states and 45 million transi-
tions). Compared to the data reported for other high-level languages such as
Mur' [34] and Promela [26], respectively, we were able to generate larger
(11 times and 4.2 times, respectively) state spaces.

Moreover, our experimental results show that parallel construction of Ltss
provides linear speedups. This is due both to the good quality of the partition
function used to distribute the state space among di�erent machines, and to well-
dimensioned communication bu�ers. The speedups obtained are more important
for the speci�cations involving complex data computations and synchronizations,
because in this case the traversal of Lts transitions becomes time expensive and
can be distributed pro�tably across di�erent machines.

In this paper, we focused on the problem of constructing Ltss in parallel,
with a special emphasis on resource management issues such as state storage
in distributed memories and transition storage in distributed �lesystems. For a
proper separation of concerns, we deliberately avoided to mix parallel state space
constructions with other issues such as on-the-y veri�cation. Obviously, it would
be straightforward to enhance the parallel algorithms with on-the-y veri�cation
capabilities such as deadlock detection, invariant checking, or more complex
properties. However, this was not suitable to obtain meaningful experimental
results (especially, the sizes of the largest state spaces that can be constructed
using the parallel approach), because on-the-y veri�cation may either terminate
early without exploring the entire state space, or explore a larger state space
when relying on automata product techniques.

This work can be continued in several directions. Firstly, we plan to pursue
our experiments and assess the scalability of the approach using a more powerful
parallel machine, a cluster of 200 Pcs that is currently under construction at
Inria Rhône-Alpes.

Secondly, we plan to extend the Distributor tool in order to handle spec-
i�cations containing dynamic data structures, such as linked lists, trees, etc.
This will require the transmission of variable length, typed data values over a
network, contrary to the current implementation of Distributor, which uses
messages of �xed length.

Finally, we will seek to determine at which point the sequential veri�cation
algorithms available in Cadp (for model-checking of temporal logic formulas on



Ltss, comparison and minimization of Ltss according to equivalence/preorder
relations) will give up. As the sizes of Ltss constructed by Distributor will
increase, it will be necessary to parallelize the veri�cation algorithms themselves.
Two approaches can be foreseen: parallel algorithms operating on-the-y dur-
ing the exploration of the Lts, or sequential algorithms working on (already
constructed) partitioned Ltss.

Acknowledgements

We are grateful to Xavier Rousset de Pina and to Emmanuel Cecchet for inter-
esting discussions and for providing valuable assistance in using the Pc cluster
of the Sirac project of Inria Rhône-Alpes. We also thank Adrian Curic and
Fr�ed�eric Lang for their careful reading and comments on this paper.

References

1. S. Allmaier, S. Dalibor, and D. Kreische. Parallel Graph Generation Algorithms
for Shared and Distributed Memory Machines. In Proceedings of the Parallel Com-
puting Conference PARCO'97 (Bonn, Germany). Springer-Verlag, 1997.

2. S. Allmaier, M. Kowarschik, and G. Horton. State Space Construction and Steady-
State Solution of GSPNs on a Shared-Memory Multiprocessor. In Proceedings
of the 7th IEEE International Workshop on Petri Nets and Performance Models
PNPM'97 (Saint Malo, France), pages 112{121. IEEE CS-Press, 1997.

3. ANSI. Small Computer System Interface-2. Standard X3.131-1994, January 1994.
4. J. A. Bergstra and J. W. Klop. Process Algebra for Synchronous Communication.

Information and Computation, 60:109{137, 1984.
5. S. Caselli, G. Conte, F. Bonardi, and M. Fontanesi. Experiences on SIMD Mas-

sively Parallel GSPN Analysis. In G. Haring and G. Kotsis, editors, Computer
Performance Evaluation: Modelling Techniques and Tools, volume 794. Lecture
Notes in Computer Science, Springer-Verlag, 1994.

6. S. Caselli, G. Conte, and P. Marenzoni. Parallel State Space Exploration for GSPN
Models. In G. De Michelis and M. Diaz, editors, Applications and Theory of
Petri Nets 1995, volume 935, pages 181{200. Lecture Notes in Computer Science,
Springer-Verlag, 1995.

7. Ernest Chang and Rosemary Roberts. An Improved Algorithm for Decentralized
Extrema-Finding in Circular Con�gurations of Processes. Communications of the
ACM, 22(5):281{283, may 1979.

8. G. Ciardo, J. Gluckman, and D. Nicol. Distributed State Space Generation of
Discrete-State Stochastic Models. INFORMS Journal of Computing, 1997.

9. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a New Symbolic
Model Checker. Springer International Journal on Software Tools for Technology
Transfer (STTT), 2(4):410{425, April 2000.

10. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
11. D. Dill. The Mur' Veri�cation System. In R. Alur and T. Henzinger, edi-

tors, Proceedings of the 8th International Conference on Computer-Aided Veri�ca-
tion CAV'96, volume 1102 of Lecture Notes in Computer Science, pages 390{393.
Springer Verlag, July 1996.



12. Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent
Mounier, and Mihaela Sighireanu. CADP (C�SAR/ALDEBARAN Development
Package): A Protocol Validation and Veri�cation Toolbox. In Rajeev Alur and
Thomas A. Henzinger, editors, Proceedings of the 8th Conference on Computer-
Aided Veri�cation (New Brunswick, New Jersey, USA), volume 1102 of Lecture
Notes in Computer Science, pages 437{440. Springer Verlag, August 1996.

13. Hubert Garavel. OPEN/C�SAR: An Open Software Architecture for Veri�ca-
tion, Simulation, and Testing. In Bernhard Ste�en, editor, Proceedings of the First
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems TACAS'98 (Lisbon, Portugal), volume 1384 of Lecture Notes in
Computer Science, pages 68{84, Berlin, March 1998. Springer Verlag. Full version
available as INRIA Research Report RR-3352.

14. Hubert Garavel and Laurent Mounier. Speci�cation and Veri�cation of Various
Distributed Leader Election Algorithms for Unidirectional Ring Networks. Science
of Computer Programming, 29(1{2):171{197, July 1997. Special issue on Industri-
ally Relevant Applications of Formal Analysis Techniques. Full version available
as INRIA Research Report RR-2986.

15. W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
and M. Snir. MPI: The Complete Reference, Vol. 2 | The MPI-2 Extensions.
MIT Press, 1998.

16. B. Haverkort, H. Bohnenkamp, and A. Bell. On the E�cient Sequential and Dis-
tributed Evaluation of Very Large Stochastic Petri Nets. In Proceedings PNPM'99
(Petri Nets and Performance Models). IEEE CS-Press, 1999.

17. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability in
Parallel Reachability Analysis of Very Large Circuits. In E. A. Emerson and
A. P. Sistla, editors, Proceedings of the 12th International Conference on Computer-
Aided Veri�cation CAV'2000 (Chicago, IL, USA), volume 1855 of Lecture Notes
in Computer Science, pages 20{35. Springer Verlag, July 2000.

18. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

19. G. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279{295, May 1997.

20. Gerard J. Holzmann. Design and Validation of Computer Protocols. Software
Series. Prentice Hall, 1991.

21. ISO/IEC. LOTOS | A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization | Information Processing Systems | Open Sys-
tems Interconnection, Gen�eve, September 1988.

22. J-M. J�ez�equel, W.M. Ho, A. Le Guennec, and F. Pennaneac'h. UMLAUT: an
Extendible UML Transformation Framework. In R.J. Hall and E. Tyugu, editors,
Proceedings of the 14th IEEE International Conference on Automated Software
Engineering ASE'99. IEEE, 1999. Also available as INRIA Technical Report RR-
3775.

23. W. J. Knottenbelt and P. G. Harrison. Distributed Disk-Based Solution Techniques
for Large Markov Models. In Proceedings of the 3rd International Meeting on the
Numerical Solution of Markov Chains NSMC'99, Zaragoza, Spain, September 1999.

24. W. J. Knottenbelt, M. A. Mestern, P. G. Harrison, and P. Kritzinger. Probability,
Parallelism and the State Space Exploration Problem. In Proceedings of the 10th
International Conference on Modelling, Techniques and Tools (TOOLS '98), pages
165{179. LNCS 1469, September 1998.



25. G�erard Le Lann. Distributed Systems | Towards a Formal Approach. In
B. Gilchrist, editor, Information Processing 77, pages 155{160. IFIP, North-
Holland, 1977.

26. F. Lerda and R. Sista. Distributed-Memory Model Checking with SPIN. In
D. Dams, R. Gerth, S. Leue, and M. Massink, editors, Proceedings of the 5th and
6th International SPIN Workshops on Theoretical and Practical Aspects of SPIN
Model Checking SPIN'99, volume 1680 of Lecture Notes in Computer Science, pages
22{39. Springer Verlag, July 1999.

27. P. Marenzoni, S. Caselli, and G. Conte. Analysis of Large GSPN Models: a Dis-
tributed Solution Tool. In Proceedings of the 7th International Workshop on Petri
Nets and Performance Models, pages 122{131. IEEE Computer Society Press, 1997.

28. Radu Mateescu and Mihaela Sighireanu. E�cient On-the-Fly Model-Checking for
Regular Alternation-Free Mu-Calculus. In Stefania Gnesi, Ina Schieferdecker, and
Axel Rennoch, editors, Proceedings of the 5th International Workshop on Formal
Methods for Industrial Critical Systems FMICS'2000 (Berlin, Germany), GMD
Report 91, pages 65{86, Berlin, April 2000. Also available as INRIA Research
Report RR-3899.

29. F. Mattern. Algorithms for Distributed Termination Detection. Distributed Com-
puting, 2:161{175, 1987.

30. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
31. D. Nicol and G. Ciardo. Automated Parallelization of Discrete State-Space Gen-

eration. Journal of Parallel and Distributed Computing, 47:153{167, 1997.
32. Y.S. Ramakrishna and S.A. Smolka. Partial-Order Reduction in the Weak Modal

Mu-Calculus. In A. Mazurkiewicz and J. Winkowski, editors, Proceedings of the
8th International Conference on Concurrency Theory CONCUR'97, volume 1243
of Lecture Notes in Computer Science, pages 5{24. Springer Verlag, 1997.

33. Judi Romijn. Model Checking the HAVi Leader Election Protocol. Technical
Report SEN-R9915, CWI, Amsterdam, The Netherlands, June 1999. submitted to
Formal Methods in System Design.

34. U. Stern and D. Dill. Parallelizing the Mur' Veri�er. In Computer Aided Veri�ca-
tion, volume 1254, pages 256{267. Lecture Notes in Computer Science, Springer-
Verlag, 1997.


